On bi-conservative surfaces in Minkowski 3-space

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ruled W - Surfaces in Minkowski 3 - Space

In this paper, we study a spacelike (timelike) ruled W-surface in Minkowski 3-space which satisfies nontrivial relation between elements of the set {K, KII , H, HII}, where (K,H) and (KII , HII) are the Gaussian and mean curvatures of the first and second fundamental forms, respectively. Finally, some examples are constructed and plotted.

متن کامل

On Razzaboni Transformation of Surfaces in Minkowski 3-Space

In this paper, we investigate the surfaces generated by binormal motion of Bertrand curves, which is called Razzaboni surface, in Minkowski 3-space. We discussed the geometric properties of these surfaces in M according to the character of Bertrand geodesics. Then, we define the Razzaboni transformation for a given Razzaboni surface. In other words, we prove that there exists a dual of Razzabon...

متن کامل

A Note on Parametric Surfaces in Minkowski 3-Space

With the help of the Frenet frame of a given pseudo null curve, a family of parametric surfaces is expressed as a linear combination of this frame. The necessary and sufficient conditions are examined for that curve to be an isoparametric and asymptotic on the parametric surface. It is shown that there is not any cylindrical and developable ruled surface as a parametric surface. Also, some inte...

متن کامل

hyperruled surfaces in minkowski 4-space

in this paper, the time-like hyperruled surfaces in the minkowski 4-space and their algebraicinvariants are worked. also some characteristic results are found about these algebraic invariants.

متن کامل

Generalized Null 2-Type Surfaces in Minkowski 3-Space

For the mean curvature vector field H and the Laplace operator ∆ of a submanifold in the Minkowski space, a submanifold satisfying the condition ∆H = f H + gC is known as a generalized null 2-type, where f and g are smooth functions, and C is a constant vector. The notion of generalized null 2-type submanifolds is a generalization of null 2-type submanifolds defined by B.-Y. Chen. In this paper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Geometry and Physics

سال: 2013

ISSN: 0393-0440

DOI: 10.1016/j.geomphys.2013.01.002